Acceleration loop powered sensors with dynamic vibration output

PC420A-DA dual output series J

Danetech sel

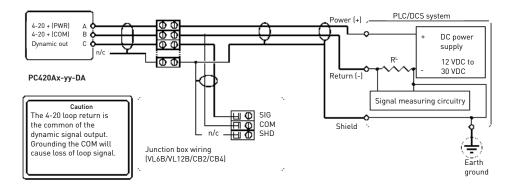

Via Italo Calvino 7 Lotto 1 - Edificio A13-14 20017 Rho (MI) Tel. +39 02 36569371 info@danetech.it www.danetech.it

Table 1: PC420Ax-yy-DA dual output model selection guide				
x (4-20 mA output type)	yy (4-20 mA full scale)	DA (dynamic output)		
R = RMS output P = calculated peak output	05 = 5 g (49 m/sec ²) 10 = 10 g (98 m/sec ²)	DA = acceleration, 100 mV/g		
TP = true peak output	$20 = 20 \text{ g } (196 \text{ m/sec}^2)$	Brt = deceleration, 100 mv/g		

Wiring diagram

Note: Dynamic output must be galvanically isolated when connected to an on time system.

Certifications

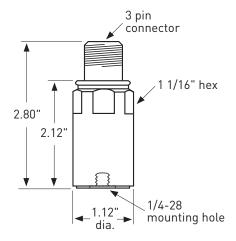
ϵ

Key features

- Choice of peak equivalent, true RMS or true peak output
- Dynamic signal output allows for in-depth analysis
- Easily integrated into existing process control systems
- Manufactured in an approved ISO 9001 facility

Note: Due to continuous process improvement, specifications are subject to change without notice. This document is cleared for public release.

Acceleration loop powered sensors with dynamic vibration output



PC420A-DA dual output series

SPECIFICATIONS

Output, 4-20 mA:		
Full scale, 20 mA, ±5%		see Table 1 on page 1
Frequency response:	±10% ±3 dB	10 Hz - 1.0 kHz 4.0 Hz - 2.0 kHz
Repeatability	ISUD	±2%
Transverse sensitivity, max		5%
Dynamic output:		376
Sensitivity, ±10%		100 mV/g
Full scale		20 g
Frequency response, ±3 dB		2.5 Hz - 10 kHz
Amplitude nonlinearity, max		1%
Resonant frequency, mounte	d nominal	25 kHz
Transverse sensitivity, max	,	5%
Power requirements (2-wire loop	n nower):	
Voltage at sensor terminal		12 - 30 VDC
Loop resistance¹ at 24 VDC, ma	X	700 Ω
Turn on time, 4-20 mA loop		<30 sec
Dynamic output, bias output vo	Itage	+3.3 VDC, re: connector pin B
Dynamic output noise, equiv. g: 2.5 Hz - 10 kHz		2 mg
Grounding		case isolated, internally shielded
Temperature range		–40° to +85°C
Vibration limit		250 g peak
Shock limit		2,500 g peak
Sealing		hermetic
Sensing element design		PZT ceramic / shear
Weight		162 grams
Case material		316L stainless steel
Mounting		1/4-28 tapped hole
Output connector		3 pin, MIL-C-5015 style
Mating connector		R6G type
Recommended cabling		J9T3A (3-conductor shielded, yellow Teflon jacket)

Connections			
Function	Connector pin		
loop positive (+)	А		
loop negative (–), dynamic common	В		
dynamic output	С		
ground	shell		

Notes: ¹ Maximum loop resistance (R_L) can be calculated by:

$$R_{L} = \frac{V_{DC power} - 10 V}{20 \text{ mA}}$$

DC supply voltage	R _L (max resistance) ²	R _∟ (minimum wattage capability)³
12 VDC	100 Ω	1/8 watt
20 VDC	500 Ω	1/4 watt
24 VDC	700 Ω	1/2 watt
26 VDC	800 Ω	1/2 watt
30 VDC	1,000 Ω	1/2 watt

 $^{^{\}rm 2}$ Lower resistance is allowed, greater than 10 Ω recommended.

Note: Due to continuous process improvement, specifications are subject to change without notice. This document is cleared for public release.

 $^{^3}$ Minimum R_L wattage determined by: $(0.0004 \times R_L)$.