RMS and peak velocity loop powered sensors

Wilcoxon's PC420V series sensors provide a 4-20 mA output proportional to velocity vibration, allowing for continuous trending of overall machine vibration. This trend data alerts users to changing machine conditions and helps guide maintenance in prioritizing the need for service. The choice of RMS or peak output allows you to choose the sensor that best fits your requirements.

PC420V series

Danetech srl 20017 Rho (Mi) - via Magenta, 77 - Edif. 6 Tel. 02 36569371 - Fax 02 36569382 @:info@danetech.ir - web; www.danetech.it

Key features

- True RMS or calculated peak output
- Intrinsically safe certified and explosion-proof models available
- Easily integrated into existing process control systems
- Manufactured in an approved ISO 9001 facility

Certifications

CE

Note: Due to continuous process improvement, specifications are subject to change without notice. This document is cleared for public release.

Wilcoxon Sensing Technologies An Amphenol Company

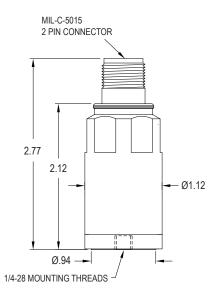
8435 Progress Drive Frederick, MD 21701 USA Tel: +1 (301) 330-8811 Fax: +1 (301) 330-8873 info@wilcoxon.com

buy.wilcoxon.com www.wilcoxon.com

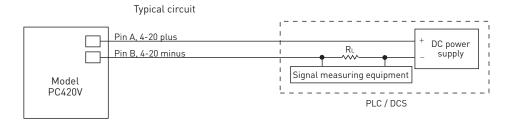
Table 1: PC420Vx-yy model selection guide

x (4-20 mA output type)	yy (4-20 mA full scale)
R = RMS output, velocity P = calculated peak output, velocity	05 = 0.5 ips (12.8 mm/sec) 10 = 1.0 ips (25.4 mm/sec) 20 = 2.0 ips (50.8 mm/sec) 30 = 3.0 ips (76.2 mm/sec) 50 = 5.0 ips (127 mm/sec)

RMS and peak velocity loop powered sensors



PC420V series


SPECIFICATIONS

Full scale, 20 mA, ±5%		see Table 1 on page 1
Frequency response:	±10% ±3 dB	10 Hz - 1.0 kHz 3.5 Hz - 2.0 kHz
Repeatability		±2%
Transverse sensitivity, max	K	5%
Power requirements, 2-wire Voltage at sensor term		12 - 30 VDC
Loop resistance ¹ at 24 VDC	C, max	700 Ω
Turn on time, 4-20 mA loop)	30 seconds
Grounding		case isolated, internally shielded
Operating temperature ran	ge	–40° to +105° C
Vibration limit		250 g peak
Shock limit		2,500 g peak
Sealing		hermetic
Sensing element design		PZT, shear
Weight		160 grams
Case material		stainless steel
Mounting		1/4-28 tapped hole
Output connector		2 pin, MIL-C-5015 style
Mating connector		R6 type
Recommended cabling		J9T2A

Connections		
Function	Connector pin	
loop positive (+)	A	
loop negative (–)	В	
ground	shell	

Accessories supplied: SF6 mounting stud; calibration data (level 2)

Note: Due to continuous process improvement, specifications are subject to change without notice. This document is cleared for public release.

Wilcoxon Sensing Technologies An Amphenol Company

8435 Progress Drive Frederick, MD 21701 USA Tel: +1 (301) 330-8811 Fax: +1 (301) 330-8873 info@wilcoxon.com

buy.wilcoxon.com www.wilcoxon.com

Notes: ¹ Maximum loop resistance (R_L) can be calculated by:

$$R_{L} = \frac{V_{DC power} - 10 V}{20 \text{ mA}}$$

DC supply voltage	R _L (max resistance) ²	R _L (minimum wattage capability) ³
12 VDC	100 Ω	1/8 watt
20 VDC	500 Ω	1/4 watt
24 VDC	700 Ω	1/2 watt
26 VDC	800 Ω	1/2 watt
30 VDC	1,000 Ω	1/2 watt

 $^{\rm 2}$ Lower resistance is allowed, greater than 10 Ω recommended.

 $^{\rm 3}$ Minimum R $_{\rm L}$ wattage determined by: (0.0004 x R $_{\rm L}).$